
Enin Datasets API Tutorial
PDF Version (https://api.enin.ai/datasets_tutorial/datasets_tutorial.pdf)

The Datasets API focuses on delivering large amount of data for statistical analysis, machine

learning modeling and data warehousing. It primarily aims for daily data loads, but there is no

technical limitation regarding this. Depending on the source, some data will be updated on varying

schedules.

The Datasets API uses HTTPS requests like most RESTful APIs, however, the underlying

infrastructure is a little bit more flexible, and some particular optimizations have been done to make

things faster and to minimize data size. In the future, alternative interfaces will be developed, e.g.,

FTP transfer or e-mail (for smaller datasets).

Available API Endpoints
The Datasets API consists of multiple endpoints which are divided into logical groupings. As of

October 2020, the following groupings of Datasets API endpoints are available:

Dataset: Accounts

Dataset: Ownership

Dataset: Company Risk

Dataset: Company

Dataset: Company Flag

Dataset: Company Employment

Each of these differ of course in what data is available in them, but also for what granularity the

data is delivered.

There is also an “Experimental” datasets endpoint group which contain legacy endpoints, or brand

new API endpoints not ready for production. We discourage the use of these in production, since

they may be changed or removed at any moment. When API endpoints in the this group are ready

for production, they will be moved to an appropriate Datasets API endpoint group.

In addition to the datasets endpoint groups there are some system specific endpoint groups:

Miscellaneous

API Client

Batch

These are there to test your connection, get information about your client, or to set up custom

collections of companies, which we call company batches.

The following section describes how to use the API. It will guide you through the implementation of

a basic script for downloading datasets to files on disk.

Requirements
At Enin we use python as our primary backend programming language, so examples will be in that

language. If you’d like to get help with integration with your own tool or language, we are more than

happy to guide you through the process. If we are familiar with your tool or programming language

•

•

•

•

•

•

•

•

•

https://api.enin.ai/datasets_tutorial/datasets_tutorial.pdf
https://api.enin.ai/datasets_tutorial/datasets_tutorial.pdf

we can even help port the examples. That said, all operations here are in essence just HTTPS

requests, so if your tool or programming language supports this you should be able to consume the

data with little effort.

To be precise, code in this tutorial was writen using the PyCharm 2019.3 IDE using Python 3.6.9

running on Ubuntu 18 in a Vagrant/VirtualBox hosted on a Windows 10 machine.

Only the requests library (https://requests.readthedocs.io/) will be an external dependency. It can

be installed via pip :

Now that our prerequisits are in order we will start our python script. Create a file named

datasets_script.py , and include the following imports:

These imports will be used later. Continue to build on this script as we move along. Also we’ll be

using a custom helper function to print some objects.

You can alternatively just use the built in print() function or the pprint module.

Note that we are using basic python scripting here without bells-and-whistles like a main entry

point, or classes, or methods, or functions. This is to keep the code clear for users who aren’t

familiar with python’s idioms. You should of course use a appropriate coding structure for your

purposes. At some later time, we will include a properly designed python client, which can be used

directly.

Authentication
Now that we have a script file, lets focus on authentication, i.e., the process of us knowing that you

are really who you are saying you are.

Authentication is done with expirable Access Tokens (https://auth0.com/docs/tokens/concepts/

access-tokens) or Basic HTTP Authentication (https://en.wikipedia.org/wiki/

Basic_access_authentication) . We recommend using tokens for production systems. In the future

we will require IP whitelisting if you use basic authentication.

pip3 install requests

import requests
import json
from datetime import datetime, timedelta

def print_obj(obj):
 print(json.dumps(obj, indent=4, ensure_ascii=False))

https://requests.readthedocs.io/
https://requests.readthedocs.io/
https://auth0.com/docs/tokens/concepts/access-tokens
https://auth0.com/docs/tokens/concepts/access-tokens
https://auth0.com/docs/tokens/concepts/access-tokens
https://auth0.com/docs/tokens/concepts/access-tokens
https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Basic_access_authentication

Note : This tutorial is self contained, so you should be able to just follow

along, including basic authentication process. But if you need extra

insight, or just need some help, you can follow our getting started

documentation (https://api.enin.ai/) (pdf (https://api.enin.ai/

getting_started.pdf)), or just contact us on team@enin.ai

(mailto:team@enin.ai) or the Enin External Slack (https://enin-

external.slack.com/) if we have set an account up for you.

Now, time to make our first request. Let’s check that you can reach the Datasets API at all - without

authentication:

This should print something like the following:

Next, let’s include authentication. For this tutorial we will be using basic authentication, i.e., just a

password and username. These are called Basic Auth Client ID and Basic Auth Client

Secret in your provided credentials file. If you haven’t received a credentials file yet, then either

contact us at team@enin.ai (mailto:team@enin.ai) or speak to someone at your organization which

has gotten the credentials file.

Please take care to save the credentials file properly, i.e., encrypted and inaccessible to other

parties. When using the credentials in your software remember to always use best practice secret

handling. In our example we will be storing the credentials as a read restricted json file named

.auth.json located next to the python script datasets_script.py . You can technically hard

code the client id and secret in your source code, however, we highly discourage it.

The .auth.json file should contain the following json data where YOUR_CLIENT_ID and

YOUR_CLIENT_SECRET are replaced appropriately:

If you are running on Linux/Ubuntu you can restrict this file to your user by running:

If you are using a source control system like Git (https://git-scm.com/) , make sure to not add this

file as source code. In git you can do this by adding the following line to the end of your

.ignorefile :

system_status = requests.get("https://api.enin.ai/datasets/v1/system-status").json()
print_obj(system_status)

{
 "message": "Enin Dataset API is operational.",
 "python_version": "3.6.9 (default, Nov 7 2019, 10:44:02) [GCC 8.3.0]"
}

{
 "client_id": "YOUR_CLIENT_ID",
 "client_secret": "YOUR_CLIENT_SECRET"
}

sudo chmod 600 .auth.json

https://api.enin.ai/
https://api.enin.ai/
https://api.enin.ai/
https://api.enin.ai/getting_started.pdf
https://api.enin.ai/getting_started.pdf
https://api.enin.ai/getting_started.pdf
https://api.enin.ai/getting_started.pdf
mailto:team@enin.ai
mailto:team@enin.ai
mailto:team@enin.ai
https://enin-external.slack.com/
https://enin-external.slack.com/
https://enin-external.slack.com/
https://enin-external.slack.com/
mailto:team@enin.ai
mailto:team@enin.ai
https://git-scm.com/
https://git-scm.com/

Now, lets load the authentication information from file.

Next, we will try to access an authentication guarded endpoint.

If all goes well, then this should print:

Let’s have a look at our API client identity:

This will give summary of some basic identity information about your API Client.

An expanded version of this endpoint is the “composite” version of this endpoint, api-client-

identity-composite . Let’s have a look.

This should print out something like the following:

.auth.json

with open('.auth.json') as file:
 auth_json = json.load(file)
client_id = auth_json['client_id']
client_secret = auth_json['client_secret']
auth = (client_id, client_secret)

auth_status = requests.get(
 "https://api.enin.ai/datasets/v1/auth-status",
 auth=auth
).json()
print_obj(auth_status)

{'message': 'You are authenticated.'}

api_client_identity = requests.get(
 "https://api.enin.ai/datasets/v1/api-client-identity",
 auth=auth,
).json()
print_obj(api_client_identity)

api_client_identity_composite = requests.get(
 "https://api.enin.ai/datasets/v1/api-client-identity-composite",
 auth=auth,
).json()
print_obj(api_client_identity_composite)

Notice that we still get the api_client_identity entity, but now also api_client and

app_customer entities. This is a general pattern you will find in the Enin APIs. Any time you see

-composite in an endpoint, think of it as a version of an existing “base” entity which has been

expanded to include more information, yet still retains the granularity of the base entity. We call this

base entity the “subject” entity of the composite.

Based on the information in the app_customer entity it seems we are part of the Bank of

Testing customer organization. Let’s see if there are more API clients registered for this

customer. The uuid ref (https://en.wikipedia.org/wiki/Universally_unique_identifier) of the

app_customer entity is b1ba011f-6350-45b3-9b0a-f02c07c0cff5 , and the customer slug

is test . We could use either to query for all of this customer’s api_client_identity entities.

Let’s use the uuid :

This returned just the same object as before. That means this is the only API Client for this

customer organization. But if there was more they would be listed.

[
 {
 "api_client": {
 "uuid": ...,
 "company_uuid: "b1ba011f-6350-45b3-9b0a-f02c07c0cff5,
 ...
 },
 "api_client_identity": {
 "uuid": ...,
 "company_uuid: "b1ba011f-6350-45b3-9b0a-f02c07c0cff5",
 ...
 },
 "app_customer": {
 "app_url": "https://app.enin.ai/settings/customer/b1ba011f-6350-45b3-9b0a-
f02c07c0cff5",
 "app_user_email": ...,
 "app_user_uuid": ...,
 "desensitize_flag": 0,
 "long_name": "Bank of Testing",
 "name": "Test Bank",
 "picture": "https://i.imgur.com/oXbiJYz.png",
 "slug": "test",
 "uuid": "b1ba011f-6350-45b3-9b0a-f02c07c0cff5"
 },
 "app_url": "https://app.enin.ai/settings/customer/b1ba011f-6350-45b3-9b0a-f02c07c0cff5",
 "uuid": ...
 }
]

app_customer_api_client_identity_composite = requests.get(
 "https://api.enin.ai/datasets/v1/app-customer/b1ba011f-6350-45b3-9b0a-f02c07c0cff5/api-client-
identity-composite",
 auth=auth,
).json()
print_obj(app_customer_api_client_identity_composite)

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier

Note : There are few to no secrets internally to one customer

organization. Any application user or API client can see most if not all

information about their customer organization. If you need chinese walls,

or otherwise separate information between multiple members of a

customer organization, then we will help you set up a sister customer

organization.

Enough about metadata. Let’s get som real datasets out of the API.

Datasets
First, lets talk about the dataset endpoints in general.

Things you can typically do with each endpoint includes:

Fetch simple data objects, called entities, or larger composites of entities.

Select fields to include in the dataset by:

… keeping only chosen fields or entity types.

… ignoring chosen fields or entity types.

Apply arbitrary filters by:

… using most possible filtering operators on any available field.

… manually creating a batch of companies to query from.

Choose desired file type: csv , json , or jsonl

Order by fields.

Limit/offset the number of entries for testing and pagination.

Each of these operations are enabled through query strings (https://en.wikipedia.org/wiki/

Query_string) .

Entities and their composites
Before we get started with examples, it might be useful to understand our API meta data design

principles. One integral API design philosophy is that the API itself seldom uses individual fields of

data, but rather full objects we call Entities. This means you will seldom se custom entities which

merge fields from multiple sources, instead you’ll find entities of one type or larger composites of

entities.

Take accounts data. The most basic Entity for accounts is the AccountsEntity , it hardly has

any information. It just says whether there is an account at all. It is perfectly possible for us to know

there are accounts for a company without us yet having fetched the associated data. As of May

2020, the the AccountsEntity is defined with the following fields/meta data:

•

•

◦

◦

•

◦

◦

•

•

•

https://en.wikipedia.org/wiki/Query_string
https://en.wikipedia.org/wiki/Query_string
https://en.wikipedia.org/wiki/Query_string
https://en.wikipedia.org/wiki/Query_string

Using the Datasets API, this data can simply be fetched from https://api.enin.ai/datasets/

v1/dataset/accounts using an HTTP GET request. Without any extra parameters this will give

you all the entities available of this kind. Of course you might want to filter this, and we will get to

that in the next sections. But another glaring issue is that the data you get from that endpoint is far

from enough to do anything useful with. So, we of course have other associated entities like

AccountsBalanceSheetEntity and AccountsIncomeStatementEntity with their respective

fields.

It would be very cumbersome if you had to fetch each of these individually. This is where

composites enter the scene. Composites are simply multiple entities merged into one larger entity

at the granularity of the entity in focus, i.e., the subject of the composite. Let’s look at what an

AccountsCompositeEntity would look like:

Here you see each element is it’s own entity. These have their own fields/metadata, so let’s expand

the first two to see what is under the hood, i.e., let’s expand AccountsEntity and

AccountsHighlightsEntity .

{
 "uuid": String,
 "company_uuid": String,
 "accounting_year": Integer,
 "accounting_announcement_date": Date,
 "accounting_schema": String,
 "accounting_from_date": Date,
 "accounting_to_date": Date,
 "accounts_type_uuid": String,
 "app_url": String,
}

{
 "accounts": AccountsEntity,
 "accounts_highlights": AccountsHighlightsEntity,
 "accounts_type": AccountsTypeEntity,
 "accounts_income_statement": AccountsIncomeStatementEntity,
 "accounts_balance_sheet": AccountsBalanceSheetEntity,
 "company": CompanyEntity,
}

To download this object you’d do a HTTP GET request to https://api.enin.ai/datasets/v1/

dataset/accounts-composite .

As you can see, there is a lot of fields. The sheer volume of meta data in our system is why we

seldom operate and manage individual fields. We define the meta data once, centrally, and reuse

that definition across our platform. If we had to manage them individually all the time, Enin would

not be doing much more than meta data curation. That said, as a consumer of our data you do

want to manage the fields you are interested in, and not ALL data ALWAYS. Because of this we

have created some tools to be able to select fields and filter entries to your needs. This will be the

focus in the next sections.

{
 "accounts": {
 "uuid": String,
 "company_uuid": String,
 "accounting_year": Integer,
 "accounting_announcement_date": Date,
 "accounting_schema": String,
 "accounting_from_date": Date,
 "accounting_to_date": Date,
 "accounts_type_uuid": String,
 "app_url": String,
 },
 "accounts_highlights": {
 "uuid", String,
 "accounts_uuid", String,
 "income_statement__operating_revenue", Float,
 "income_statement__ebitda", Float,
 "income_statement__ebit", Float,
 "income_statement__ordinary_result_after_taxes", Float,
 "income_statement__net_income", Float,
 "balance__intangible_assets", Float,
 "balance__fixed_assets", Float,
 "balance__cash_and_deposits", Float,
 "balance__total_current_assets", Float,
 "balance__total_assets", Float,
 "balance__equity", Float,
 "balance__liabilities", Float,
 "current_ratio", Float,
 "quick_ratio", Float,
 "return_on_assets", Float,
 "profit_margin", Float,
 "equity_profitability", Float,
 "equity_ratio", Float,
 "debt_ratio", Float,
 "income_statement__ebt", Float,
 "income_statement__currency_code", String,
 "accounting_year", Integer,
 "app_url", String,
 },
 "accounts_type": AccountsTypeEntity,
 "accounts_income_statement": AccountsIncomeStatementEntity,
 "accounts_balance_sheet": AccountsBalanceSheetEntity,
 "company": CompanyEntity,
}

Fetching basic entity data
While discussing entities, we’ve already looked at some basic API endpoints, now let’s be explicit

about how to use them. We will be fetching entities of type CompanyEntity and

CompanyCompositeEntity , from the endpoints

https://api.enin.ai/datasets/v1/dataset/company and https://api.enin.ai/

datasets/v1/dataset/company-composite , respectively.

Let’s start by requesting 3 entities of type CompanyEntity . You can limit the number of entries

returned to 3 by adding the query string ?limit=3 :

By default this could print something like the following:

Notice that this returns valid JSON. If you are downloading few entries and the data fits into

memory, then this is a good format to use, and there are plenty of libraries which handle it nicely.

However, JSON is a little annoying to work with if it gets large. The fact that there are start and end

square brackets, and the fact that there are N-1 number of commas delimiting each entity makes it

hard to stream. There are of course tools which handle this, but to make things easier we also

support

the JSONL format, which has one JSON object (entity) per line, and CSV which is has the same

feature and is a lot more compact (doesn’t repeat the field names all the time).

Let’s try JSONL:

companies = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/company?limit=3",
 auth=auth,
).json()
print_obj(companies)

[
 {
 "insert_timestamp": "2019-08-05T00:18:08.349297+00:00",
 "name": "EIENDOMSMEGLER 1 HEDMARK EIENDOM AS AVD GJØVIK",
 "org_nr": "972150797",
 "org_nr_schema": "NO",
 "update_timestamp": "2019-08-05T00:18:08.349297+00:00",
 "uuid": "14d39ef2-d1a1-46b9-8571-440d23dbb6d0"
 },
 {
 "insert_timestamp": "2019-07-24T07:34:44.004922+00:00",
 "name": "SPAREBANKEN SOGN OG FJORDANE AVD FLORØ",
 "org_nr": "973167529",
 "org_nr_schema": "NO",
 "update_timestamp": "2019-07-24T07:34:44.004922+00:00",
 "uuid": "b5b222fa-a9fe-4c04-bc9f-c9a9f9c32f44"
 },
 {
 "insert_timestamp": "2018-10-16T12:33:39.528266+00:00",
 "name": "Unknown Name",
 "org_nr": "927822334",
 "org_nr_schema": "NO",
 "update_timestamp": "2018-10-16T12:33:39.528266+00:00",
 "uuid": "59866d11-405e-44f2-9c70-f6345b2c9e4f"
 }
]

This outputs:

If you would like to stream this using python you could do:

A similar strategy can work with other tools as well.

Fetching the same file as CSV can be done as follows:

… which prints:

Fetching composite entity data
When fetching composites things change slightly. With a composite you will notice that the entries

are nested one level deeper. The JSON objects are nested one more level, and the CSV field

names uses dot notation the indicate deeper structures.

Let’s fetch the JSON version of CompanyCompositeEntity :

This will give quite a huge object:

companies = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/company?limit=3&file_type=jsonl",
 auth=auth,
).content.decode()
print(companies)

{"name": "EIENDOMSMEGLER 1 HEDMARK EIENDOM AS AVD GJØVIK", "uuid": "14d39ef2-d1a1-46b9-8571 ... }
{"name": "SPAREBANKEN SOGN OG FJORDANE AVD FLORØ", "uuid": "b5b222fa-a9fe-4c04-bc9f-c9a9f9c ... }
{"name": "Unknown Name", "uuid": "59866d11-405e-44f2-9c70-f6345b2c9e4f", "org_nr": "9278223 ... }

companies = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/company?limit=3&file_type=jsonl",
 auth=auth,
 stream=True
)
for line in companies.iter_lines():
 payload = json.loads(line.decode())
 print_obj(payload)

companies = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/company?limit=3&file_type=csv",
 auth=auth,
).content.decode()
print(companies)

uuid,name,org_nr,update_timestamp,insert_timestamp,org_nr_schema
14d39ef2-d1a1-46b9-8571-440d23dbb6d0,EIENDOMSMEGLER 1 HEDMARK EIENDOM AS AVD GJØVIK,9721507 ...
b5b222fa-a9fe-4c04-bc9f-c9a9f9c32f44,SPAREBANKEN SOGN OG FJORDANE AVD FLORØ,973167529,2019- ...
59866d11-405e-44f2-9c70-f6345b2c9e4f,Unknown Name,927822334,2018-10-16 12:33:39.528266+00,2 ...

company_composites = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/company-composite?limit=3",
 auth=auth,
).json()
print_obj(company_composites)

The same query with file_type=csv as follows:

… you will get:

Notice how company.uuid is nested using dot notation. This is will be relevant later when we

select fields, and filter on field data.

Selecting fields
There is a wealth of fields available, but you probably don’t want all of them in one go. There are

two ways to filter down what fields you get in return. One is using the keep_only_fields query

parameter, the other is to user ignore_fields . These can be used on individual fields like

[
 {
 "company": {
 "insert_timestamp": "2018-04-27T16:33:37.237567+00:00",
 "name": "AMUND BROMSTAD",
 "org_nr": "991665595",
 "org_nr_schema": "NO",
 "update_timestamp": "2019-04-23T00:37:00.033835+00:00",
 "uuid": "000004ff-c89f-405d-b8dc-fcc1bc293019"
 },
 "organization_type": {
 "insert_timestamp": "2018-05-16T13:36:29.145604+00:00",
 "org_nr_schema": "NO",
 "organization_type_code": "FLI",
 "organization_type_description": "Forening/lag/innretning",
 "update_timestamp": "2020-05-11T05:18:02.127477+00:00",
 "uuid": "dbccefba-f227-568d-9933-7084395aba98"
 },
 "company_affiliation_accountant": { ...},
 "company_affiliation_auditor": { ... },
 "company_affiliation_type_accountant": { ... },
 "company_affiliation_type_auditor": { ... },
 "company_details": { ... },
 "company_location_business_address": { ... },
 "company_nace_code_primary": { ... },
 "company_nace_code_secondary": { ... },
 "company_nace_code_tertiary": { ... },
 "geo_location_business_address": { ... },
 "nace_code_primary": { ... },
 "nace_code_secondary": { ... },
 "nace_code_tertiary": { ... }
 {
 "company": {
 "name": "SYKKYLVEN GATEBILKLUBB",
 ...

company_composites = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/company-composite?limit=3&file_type=csv",
 auth=auth,
).content.decode()
print(company_composites)

company.uuid,company.name,company.org_nr,company.update_timestamp,company.insert_timestamp, ...
000004ff-c89f-405d-b8dc-fcc1bc293019,AMUND BROMSTAD,991665595,2019-04-23 00:37:00.033835+00 ...
0000075d-9a33-4d17-be6f-3adda98ebcae,SYKKYLVEN GATEBILKLUBB,912801535,2020-05-11 05:16:45.9 ...
00000d51-acaf-4db6-be73-13c727a57f9d,MOLIN MASKIN & TRANSPORT MARIUS TOBIASSEN,913966082,20 ...

company.uuid or company.org_nr_schema , or you can apply them to all fields of an entity by

omitting the last part of the dot notation, e.g., you can use just company as a parameter value and

it will apply to all fields of that entity.

Ignoring particular fields or entities

If you would like to ignore some fields or entities, then ignore_fields is your go to parameter.

Say, you don’t want the UUID of the CompanyEntity then you could write the query parameter as

ignore_fields=company.uuid . You can also specify a list of fields or entities you would like to

ignored by delimiting them by a comma (,). Say, you would like to also ignore the organization

number schema (typically the country code), then you’d write the query parameter as

ignore_fields=company.uuid,company.org_nr_schema . Or, say you would like to ignore the

company entity all together, then you could write the query parameter as just

ignore_fields=company .

Let’s try this out on the CompanyEntity endpoint:

Because the argument list is getting large let’s use the requests library’s query parameter

functionality. The above query is identical to:

And, we can also split the ignore_fields list using python’s str.join() function. This means

that the above is identical to the following:

If you are making more advanced calls, as we are about to do, you should consider also

parameterize like this in your tool or programming language.

companies = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/company?
limit=3&ignore_fields=company.uuid,company.org_nr_schema",
 auth=auth,
).json()
print_obj(companies)

companies = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/company",
 params={
 "limit": 3,
 "ignore_fields": "company.uuid,company.org_nr_schema",
 },
 auth=auth,
).json()
print_obj(companies)

companies = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/company",
 params={
 "limit": 3,
 "ignore_fields": ','.join(
 [
 "company.uuid",
 "company.org_nr_schema",
]
)
 },
 auth=auth,
).json()
print_obj(companies)

Running the previous code prints the following:

Notice how org_nr_schema and uuid are missing.

Keeping only particular fields or entities

The previous section was all about ignoring fields you aren’t interested in. That is nice to have, but

what if you only need a few fields and entities? Listing almost all fields can get cumbersome fast.

This is especially true if you are using composite API endpoints, which tend to have rather many

fields and entities. Also, over time there are bound to be added more fields which would show up if

you only relied on ignore_fields .

This is where the keep_only_fields query parameter comes in to play. It ignores all other fields

than those you specified. Let’s try it out by fetching CompanyEntity with it’s primary

NaceCodeEntity using the https://api.enin.ai/datasets/v1/dataset/company-

composite API endpoint, and say, return it as a CSV file:

Notice that we just asked for the company and nace code entities, and not particular fields of those

fields. This will return the following:

[
 {
 "name": "EIENDOMSMEGLER 1 HEDMARK EIENDOM AS AVD GJØVIK",
 "org_nr": "972150797",
 "insert_timestamp": "2019-08-05T00:18:08.349297+00:00",
 "update_timestamp": "2019-08-05T00:18:08.349297+00:00"
 },
 {
 "name": "SPAREBANKEN SOGN OG FJORDANE AVD FLORØ",
 "org_nr": "973167529",
 "insert_timestamp": "2019-07-24T07:34:44.004922+00:00",
 "update_timestamp": "2019-07-24T07:34:44.004922+00:00"
 },
 {
 "name": "Unknown Name",
 "org_nr": "927822334",
 "insert_timestamp": "2018-10-16T12:33:39.528266+00:00",
 "update_timestamp": "2018-10-16T12:33:39.528266+00:00"
 }
]

company_composites = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/company-composite",
 params={
 "limit": 3,
 "response_file_type": "csv",
 "keep_only_fields": ','.join(
 [
 "company",
 "nace_code_primary",
]
)
 },
 auth=auth,
).content.decode()
print(company_composites)

That’s still a lot of data. We can’t even fit it in the output box above. Let’s use the ignore field

functionality and remove the company UUID and timestamps:

At least we now can fit some NACE code data into the output box:

Turns out AMUND BROMSTAD doesn’t have a NACE code. You can see that by the empty data

entries. Also we can barely see that SYKKYLVEN GATEBILKLUBB has the NACE code 94.991 .

Let’s just keep only nace_code_primary.nace_code and nace_code_primary.short_name ,

and also ignore company.org_nr_schema :

company.uuid,company.name,company.org_nr,company.update_timestamp,company.insert_timestamp, ...
000004ff-c89f-405d-b8dc-fcc1bc293019,AMUND BROMSTAD,991665595,2019-04-23 00:37:00.033835+00 ...
0000075d-9a33-4d17-be6f-3adda98ebcae,SYKKYLVEN GATEBILKLUBB,912801535,2020-05-14 01:03:19.4 ...
00000d51-acaf-4db6-be73-13c727a57f9d,MOLIN MASKIN & TRANSPORT MARIUS TOBIASSEN,913966082,20 ...

company_composites = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/company-composite",
 params={
 "limit": 3,
 "response_file_type": "csv",
 "ignore_fields": ','.join(
 [
 "company.uuid",
 "company.update_timestamp",
 "company.insert_timestamp",
]
),
 "keep_only_fields": ','.join(
 [
 "company",
 "nace_code_primary",
]
)
 },
 auth=auth,
).content.decode()
print(company_composites)

company.name,company.org_nr,company.org_nr_schema,nace_code_primary.uuid,nace_code_primary.
AMUND BROMSTAD,991665595,NO,,,,,,,,
SYKKYLVEN GATEBILKLUBB,912801535,NO,840f6832-13de-43ab-9455-93822c3f5717,94.991,5,Aktivitet ...
MOLIN MASKIN & TRANSPORT MARIUS TOBIASSEN,913966082,NO,cc9b075e-ce7f-4255-b894-97ed6e9257b4 ...

Finally, a nice short selection of fields we are interested in:

The take away is that you can combine ignore_fields and keep_only_fields on both fields

and entities to select exactly the data you need.

Running this without the limit parameter took 3 minutes and returned 2165983 entries, which is

exactly how many unique organization numbers we have in our system as of May 2020. This, is a

lot. Let’s start work on filtering.

Filtering entities
Some filters are special for particular endpoints, but in general the Datasets API have two main

types of filters. Those which can be applied to data fields of the entities you are downloading, or

based on what we call company batches.

Basic data field filtering

To spice things up, let’s switch to accounting data using the

https://api.enin.ai/datasets/v1/dataset/accounts-composite API endpoint. This

endpoint is a composite endpoint with a wealth of information regarding company accounts and

financial data of companies. The accounts entity composition looks as follows:

company_composites = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/company-composite",
 params={
 "limit": 3,
 "response_file_type": "csv",
 "ignore_fields": ','.join(
 [
 "company.uuid",
 "company.org_nr_schema",
 "company.update_timestamp",
 "company.insert_timestamp",
]
),
 "keep_only_fields": ','.join(
 [
 "company",
 "nace_code_primary.nace_code",
 "nace_code_primary.short_name",
]
)
 },
 auth=auth,
).content.decode()
print(company_composites)

company.name,company.org_nr,nace_code_primary.nace_code,nace_code_primary.short_name
AMUND BROMSTAD,991665595,,
SYKKYLVEN GATEBILKLUBB,912801535,94.991,Interesseorganisasjoner ellers
MOLIN MASKIN & TRANSPORT MARIUS TOBIASSEN,913966082,43.120,Grunnarbeid

This has the granularity of each accounting report, typically one each year, and will have duplicate

companies if there are multiple accounts for a company.

Let’s start by fetching info about the revenue of companies:

This prints the following:

Those results seem very arbitrary. And if you removed the limit you’d get get 4814791 entries.

Filtering on entity fields is done using the previously introduced dot notation, in addition to an

operator for more complex queries. For the most basic equality filtering you can simply use the dot

notation as a query argument. The not notation itself indicates to the endpoint that you want to

filter.

Let’s try it out by filtering on year:

{
 "accounts": AccountsEntity,
 "accounts_type": AccountsTypeEntity,
 "company": CompanyEntity,
 "company_batch_mapping": CompanyBatchMappingEntity,
 "accounts_highlights": AccountsHighlightsEntity,
 "accounts_income_statement": AccountsIncomeStatementEntity,
 "accounts_balance_sheet": AccountsBalanceSheetEntity,
}

accounts_composites = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/accounts-composite",
 params={
 "limit": 3,
 "response_file_type": "csv",
 "keep_only_fields": ','.join(
 [
 "company.name",
 "company.org_nr",
 "accounts.accounting_year",
 "accounts_income_statement.total_operating_income",
]
)
 },
 auth=auth,
).content.decode()
print(accounts_composites)

accounts.accounting_year,company.name,company.org_nr,accounts_income_statement.total_operat ...
2000,Rana Maskinstasjon A/S,832071072,1687000.0
2018,OMIT AS,916648464,0
2018,HALSEN BORETTSLAG,952825240,998000

In return we get:

It seems to have worked. Adding more filters narrows down the dataset, as it assumes the filters

are combined using the boolean AND operators. Downloading this without a limit gives 349125

entries. You can apply the filters on any connected entity.

Let’s fetch data on a particular company, but this time also print out the generated URL just to

highlight how the filters look when URL encoded, and not just when they are in object form.

The first print statement returns something like the following:

accounts_composites = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/accounts-composite",
 params={
 "limit": 3,
 "response_file_type": "csv",
 "accounts.accounting_year": 2018,
 "keep_only_fields": ','.join(
 [
 "company.name",
 "company.org_nr",
 "accounts.accounting_year",
 "accounts_income_statement.total_operating_income",
]
)
 },
 auth=auth,
).content.decode()
print(accounts_composites)

accounts.accounting_year,company.name,company.org_nr,accounts_income_statement.total_operat ...
2018,TRAIN ING. AS,997924231,
2018,HELLY INVEST AS,990759413,
2018,MOMENTUM RETAIL NORWAY AS,913104358,12385000

accounts_composites_response = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/accounts-composite",
 params={
 "limit": 3,
 "response_file_type": "csv",
 "accounts.accounting_year": 2018,
 "company.org_nr_schema": 'NO',
 "company.org_nr": '812750062',
 "keep_only_fields": ','.join(
 [
 "company.name",
 "company.org_nr",
 "accounts.accounting_year",
 "accounts_income_statement.total_operating_income",
]
)
 },
 auth=auth,
)
accounts_composites = accounts_composites_response.content.decode()
print(accounts_composites_response.url)
print(accounts_composites)

(I’ve taken the liberty to format the above URL for clarity, the real printout has all commas encoded

as %2C and there are no white spaces.)

As you can see parameters which use the dot notation are filters.

The second print statement gives the following:

If you are acquainted with Norwegian accounting data, the fact that two entries were returned for

one company on the same year might be confusing. Generally speaking company only returns one

official accounts report to the authorities per year. The there are two here is because one is the

corporate accounts and one is the company accounts for the same organization. Let’s illustrate this

by adding accounts_type.accounts_type_key to the keep_only_fields parameter. This

gives:

As we can see these are divided by annual_corporate_group_accounts and

annual_company_accounts . Adding

accounts_type.accounts_type_key=annual_company_accounts as a dot notation filter query

parameter brings this down to only one entry, as expected:

Advanced data fields filtering

We have so far only handled equality filters. These are the default when using dot notation filters.

In fact, the notation we have used so far is only the shorthand version of the equality filter.

The filter accounts_type.accounts_type_key=annual_company_accounts writen using an

explicit operator is done as follows:

accounts_type.accounts_type_key=EQ:annual_company_accounts . Both give identical

results. But the latter can be changed to work with other operators, especially usefull when filtering

numeric values.

The general syntax for dot notation filtering is as follows:

https://api.enin.ai/datasets/v1/dataset/accounts-composite?
limit=3&
file_type=csv&
accounts.accounting_year=2018&
company.org_nr_schema=NO&
company.org_nr=812750062&
keep_only_fields=
 company.name,
 company.org_nr,
 accounts.accounting_year,
 accounts_income_statement.total_operating_income

accounts.accounting_year,company.name,company.org_nr,accounts_income_statement.total_operat ...
2018,Bergene Holm AS,812750062,1619605000
2018,Bergene Holm AS,812750062,1619310000

accounts.accounting_year,accounts_type.accounts_type_key,company.name,company.org_nr,accoun ...
2018,annual_corporate_group_accounts,Bergene Holm AS,812750062,1619605000
2018,annual_company_accounts,Bergene Holm AS,812750062,1619310000

accounts.accounting_year,accounts_type.accounts_type_key,company.name,company.org_nr,accoun ...
2018,annual_company_accounts,Bergene Holm AS,812750062,1619310000

<entity> is as expected, a named collection of fields. The database equivalent is a table.

<field> is also as expected, a named value as part of an entity. The database equivalent is a

column.

<negation> can either be tilde (~) or empty string. If used it negates the whole operation. It

enables operations like “not in” or “is not null”.

<operator> can be one of the following:

Operator Equivalent SQL Description

GTE >= Greater than or equal.

LTE <= Less than or equal.

GT > Greater than.

LT < Less than.

EQ = Equal.

IN in Checks equality on a comma separated list of values.

IS is Checks identity. Only works for empty string or null .

ILIKE ilike Case-insensitive partial text match.

LIKE like Case-sensitive partial text match.

The ILIKE and LIKE operators use % as a wild card of any length, and _ as a single

character wild card. You can escape these by using \% and _

Finally, <filter_value> is the value you want the filtering to be done based on. Must be a

supplied value, and can not reference other fields.

Let’s try this out by filtering some numeric value in the accounts data. Let’s find all accounts with

more than 50 billion in revenue in 2018.

URL encoded you can write this as:

Let’s do this in python:

<entity>.<field>=<negation><operator>:<filter_value>

accounts.accounting_year=EQ:2018&accounts_income_statement.total_operating_income=GT:50000000000

This returns 4 accounts:

If we would like another accounting year, say 2008, then then you could use the IN operator like

this:

Using this returns 9 accounts including those previously fetched:

This IN operator can be usefull for many sort of operations. You can for instance get the above

list directly using their org_nr with the following query string:

As a python script you can try like this:

accounts = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/accounts-composite",
 params={
 "response_file_type": "csv",
 "accounts_type.accounts_type_key": "EQ:annual_company_accounts",
 "accounts.accounting_year": "EQ:2018",
 "accounts_income_statement.total_operating_income": "GT:50000000000",
 "keep_only_fields": ','.join(
 [
 "company.name",
 "company.org_nr",
 "accounts.accounting_year",
 "accounts_income_statement.total_operating_income",
]
)
 },
 auth=auth,
).content.decode()
print(accounts)

accounts.accounting_year,company.name,company.org_nr,accounts_income_statement.total_operat ...
2018,HELSE SØR-ØST RHF,991324968,75744464000
2018,EQUINOR ENERGY AS,990888213,214951445000
2018,EQUINOR ASA,923609016,483083652000
2018,HYDRO ALUMINIUM AS,917537534,52570000000

 accounts.accounting_year=IN:2008,2018

accounts.accounting_year,company.name,company.org_nr,accounts_income_statement.total_operat ...
2018,EQUINOR ENERGY AS,990888213,214951445000
2008,EXXONMOBIL EXPLORATION AND PRODUCTION NORWAY AS,914048990,67882000000
2008,ESSO NORGE AS,914803802,55560000000
2008,EQUINOR ENERGY AS,990888213,81474000000
2008,TOTAL E&P NORGE AS,927066440,57122000000
2018,HELSE SØR-ØST RHF,991324968,75744464000
2018,EQUINOR ASA,923609016,483083652000
2008,EQUINOR ASA,923609016,588422000000
2018,HYDRO ALUMINIUM AS,917537534,52570000000

company.org_nr=IN:
990888213,914048990,914803802,990888213,927066440,991324968,923609016,923609016,917537534

This returns all of the previous entries, and a few more where some of the companies didn’t have

50 billion NOK revenues:

This is all and good, but what happens if we want 10000 companies. In that case you will meet a

technical limitation where the URL is capped to a fixed number of characters. To handle this we

use company batches.

Company batches filtering

Company batches are simple collections of companies you can maintain temporarily or indefinitely.

When created they are empty, but have an assigned UUID you can use to reference it, or you can

supply your own “key” to identify your company batch with. The expiration date can be left unset,

then a default will be used, or you can set it to whatever you like. If you don’t want it to ever be

deleted, you can assign it null which means it will last until manually deleted.

accounts = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/accounts-composite",
 params={
 "response_file_type": "csv",
 "accounts_type.accounts_type_key": "EQ:annual_company_accounts",
 "accounts.accounting_year": "IN:2008,2018",
 "company.org_nr_schema": "EQ:NO",
 "company.org_nr": "IN:" + ','.join(
 [
 "914048990",
 "914803802",
 "917537534",
 "923609016",
 "927066440",
 "990888213",
 "991324968",
]
),
 "keep_only_fields": ','.join(
 [
 "company.name",
 "company.org_nr",
 "accounts.accounting_year",
 "accounts_income_statement.total_operating_income",
]
)
 },
 auth=auth,
).content.decode()
print(accounts)

accounts.accounting_year,company.name,company.org_nr,accounts_income_statement.total_operat ...
2018,EXXONMOBIL EXPLORATION AND PRODUCTION NORWAY AS,914048990,30239000000
2008,EXXONMOBIL EXPLORATION AND PRODUCTION NORWAY AS,914048990,67882000000
2018,ESSO NORGE AS,914803802,31061000000
2008,ESSO NORGE AS,914803802,55560000000
2018,TOTAL E&P NORGE AS,927066440,35091000000
2008,TOTAL E&P NORGE AS,927066440,57122000000
2018,EQUINOR ASA,923609016,483083652000
2008,EQUINOR ASA,923609016,588422000000
2018,HELSE SØR-ØST RHF,991324968,75744464000
2008,HELSE SØR-ØST RHF,991324968,48986731000
2018,EQUINOR ENERGY AS,990888213,214951445000
2008,EQUINOR ENERGY AS,990888213,81474000000
2018,HYDRO ALUMINIUM AS,917537534,52570000000
2008,HYDRO ALUMINIUM AS,917537534,48952000000

The neat thing about these batches is that the UUID or your assigned key they can be used as

filters many places in the API.

Let’s try to replicate the previous filter using a company batch.

First, we need to make a company batch using a HTTP POST request. These requests have a

body we can supply data via, instead of a through the URL as a query parameter. In the

requests library we can simply supply an object to the post() method as the json argument

and it will automatically be interpreted as JSON HTTP POST request.

Alright, let’s make our first company batch and name it my_test_batch , and set the

expiration_timestamp to be one day from now. The format for the timestamp follows python’s

implementation of ISO8601 (https://en.wikipedia.org/wiki/ISO_8601) . This means you can specify

it down to the millisecond, or just supply a date of the form YYYY-MM-DD .

This first prints the supplied expiration_timestamp :

… then the server batch representation of the batch you supplied:

You can also find existing batches by listing all the available company batches for the customer

you represent by doing a HTTP GET request to the company batch API endpoint:

If you have only made the one batch in the above example it should list the previous batch as

follows:

expiration_timestamp = (datetime.now() + timedelta(days=1)).isoformat()
company_batch = requests.post(
 'https://api.enin.ai/analysis/v1/company-batch',
 auth=auth,
 json={
 'company_batch_key': 'my_test_batch',
 'expiration_timestamp': expiration_timestamp,
 }
).json()
print('expiration_timestamp:', expiration_timestamp)
print_obj(company_batch)

expiration_timestamp: 2020-05-15T18:42:49.668177

{
 "uuid": "65ed1de0-0b04-48be-abc1-d8099a0aaed9",
 "app_customer_uuid": "85e3e2f9-2114-4836-acda-6d1a30779c65",
 "expiration_timestamp": "2020-05-15T18:42:49.668177+00:00",
 "company_batch_key": "my_test_batch",
 "app_url": null
}

company_batches = requests.get(
 'https://api.enin.ai/analysis/v1/company-batch',
 auth=auth,
).json()
print_obj(company_batches)

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601

Next, we need to fill this batch with companies:

Here we are POSTing a list with only a single company (using its UUID) to the company batch we

just created. Notice that we saved the new batch object as company_batch and we are using the

generated company batch UUID as part of the request URL. In this case we are not using query

parameters, but rather the URL itself. You can build URLs like this using string interpolation of

some kind. In this case we are using python’s str.format(...) function for this purpose.

We didn’t have to use the UUIDs for POSTing here. Let’s try using company_batch_key we

supplied earlier and the organization numbers from those 50 billion NOK companies we queried

earlier.

This time we didn’t need to use string interpolation, and using the organization numbers makes

things just that more easy to work with. Just remember that the org_nr_schema is required. The

output from the above request is as follows:

[
 {
 "uuid": "e11d6828-e3b1-4935-9dcc-4818c4ef5e4e",
 "app_customer_uuid": "85e3e2f9-2114-4836-acda-6d1a30779c65",
 "expiration_timestamp": "2020-05-15T18:42:49.668177+00:00",
 "company_batch_key": "my_test_batch",
 "app_url": null
 }
]

companies = requests.post(
 'https://api.enin.ai/analysis/v1/company-batch/{company_batch_identifier}/company'.format(
 company_batch_identifier=company_batch['uuid']
),
 auth=auth,
 json=[
 {'uuid': 'f0e01f1e-f977-429f-ac12-0f0418901bfe'},
]
).json()
print_obj(companies)

companies = requests.post(
 'https://api.enin.ai/datasets/v1/dataset/company-batch/my_test_batch/company',
 auth=auth,
 json=[
 {"org_nr": "914048990", "org_nr_schema": "NO"},
 {"org_nr": "914803802", "org_nr_schema": "NO"},
 {"org_nr": "917537534", "org_nr_schema": "NO"},
 {"org_nr": "923609016", "org_nr_schema": "NO"},
 {"org_nr": "927066440", "org_nr_schema": "NO"},
 {"org_nr": "990888213", "org_nr_schema": "NO"},
 {"org_nr": "991324968", "org_nr_schema": "NO"},
]
).json()
print_obj(companies)

Notice that the post only returned the companies you just POSTed. Let’s return them all:

This give all the entries in the batch:

Note that the company batch API endpoints are not special like the datasets API endpoints in that

the special filtering and field selection features we’ve been talking about until now do not apply for

the the content of company batches.

In the output above, we see that the first company we inserted (with an UUID of f0e01f1e-

f977-429f-ac12-0f0418901bfe) is still there!

[
 {
 "name": "HELSE SØR-ØST RHF",
 "uuid": "e7564cfd-1a26-464e-ac61-b8b5c9c18f74",
 "org_nr": "991324968",
 "org_nr_schema": "NO",
 "app_url": "https://app.enin.ai/company/e7564cfd-1a26-464e-ac61-b8b5c9c18f74"
 },
 { "name": "EQUINOR ENERGY AS", ... },
 { "name": "ESSO NORGE AS", ... },
 { "name": "TOTAL E&P NORGE AS", ... },
 { "name": "HYDRO ALUMINIUM AS", ... },
 { "name": "EXXONMOBIL EXPLORATION AND PRODUCTION NORWAY AS", ... },
 { "name": "EQUINOR ASA", ... }
]

companies = requests.get(
 'https://api.enin.ai/datasets/v1/dataset/company-batch/my_test_batch/company',
 auth=auth,
).json()
print_obj(companies)

[
 {
 "name": "ENIN AS",
 "uuid": "f0e01f1e-f977-429f-ac12-0f0418901bfe",
 "org_nr": "917540640",
 "org_nr_schema": "NO",
 "app_url": "https://app.enin.ai/company/f0e01f1e-f977-429f-ac12-0f0418901bfe"
 },
 {
 "name": "HELSE SØR-ØST RHF",
 "uuid": "e7564cfd-1a26-464e-ac61-b8b5c9c18f74",
 "org_nr": "991324968",
 "org_nr_schema": "NO",
 "app_url": "https://app.enin.ai/company/e7564cfd-1a26-464e-ac61-b8b5c9c18f74"
 },
 { "name": "EQUINOR ENERGY AS", ... },
 { "name": "ESSO NORGE AS", ... },
 { "name": "TOTAL E&P NORGE AS", ... },
 { "name": "HYDRO ALUMINIUM AS", ... },
 { "name": "EXXONMOBIL EXPLORATION AND PRODUCTION NORWAY AS", ... },
 { "name": "EQUINOR ASA", ... }
]

It seems a little off compared to the other companies in that list, so lets just delete it. This can be

done with either the UUID or its organization number, both represent a “company identifier” and

can be used interchangeably if you see the argument named company_identifier in the

generated API documentation. Just make sure you prefix the organization number with the

organization number schema (NO for Brønnøysundregistrene in Norway).

Also deletes returns to you the object just deleted:

Now doing a HTTP GET request to https://api.enin.ai/datasets/v1/dataset/company-

batch/my_test_batch/company returns the expected 7 organizations:

Now that we know how to create and manage company batches, let’s use one to filter datasets API

endpoints. To do this we simply replace the IN dot notation filter we used earlier with simply a

company_batch_identifier query parameter. Notice how it is not a dot notation filter, just a

regular query parameter, and that it also is postfixed with _identifier , this indicates that it

accepts multiple forms of keys. In this case both the UUID of the company batch and the

company_batch_key we supplied earlier. Let’s use the latter:

company = requests.delete(
 'https://api.enin.ai/datasets/v1/dataset/company-batch/my_test_batch/company/NO917540640',
 auth=auth,
).json()
print_obj(company)

{
 "uuid": "f0e01f1e-f977-429f-ac12-0f0418901bfe",
 "name": "ENIN AS",
 "org_nr": "917540640",
 "org_nr_schema": "NO",
 "app_url": "https://app.enin.ai/company/f0e01f1e-f977-429f-ac12-0f0418901bfe"
}

[
 { "name": "HELSE SØR-ØST RHF", ... },
 { "name": "EQUINOR ENERGY AS", ... },
 { "name": "ESSO NORGE AS", ... },
 { "name": "TOTAL E&P NORGE AS", ... },
 { "name": "HYDRO ALUMINIUM AS", ... },
 { "name": "EXXONMOBIL EXPLORATION AND PRODUCTION NORWAY AS", ... },
 { "name": "EQUINOR ASA", ... }
]

As we hoped for this returns the same results as previously:

The only difference is that there is no upper bound to how large the company batch can be!

Finally, let’s clean up the test batch:

We can also do this by using the company batch UUID.

Company batches filtering in a single request

In addition to explicitly using company batches to fetch data about a list of companies, you can

also do so in a single response in two ways. The simplest way is to use a comma separated list of

organization numbers or company uuids like this:

accounts = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/accounts-composite",
 params={
 "response_file_type": "csv",
 "accounts_type.accounts_type_key": "EQ:annual_company_accounts",
 "accounts.accounting_year": "IN:2008,2018",
 "company.org_nr_schema": "EQ:NO",
 "company_batch_identifier": "my_test_batch",
 "keep_only_fields": ','.join(
 [
 "company.name",
 "company.org_nr",
 "accounts.accounting_year",
 "accounts_income_statement.total_operating_income",
]
)
 },
 auth=auth,
).content.decode()
print(accounts)

accounts.accounting_year,company.name,company.org_nr,accounts_income_statement.total_operat ...
2018,EXXONMOBIL EXPLORATION AND PRODUCTION NORWAY AS,914048990,30239000000
2008,EXXONMOBIL EXPLORATION AND PRODUCTION NORWAY AS,914048990,67882000000
2018,ESSO NORGE AS,914803802,31061000000
2008,ESSO NORGE AS,914803802,55560000000
2018,TOTAL E&P NORGE AS,927066440,35091000000
2008,TOTAL E&P NORGE AS,927066440,57122000000
2018,EQUINOR ASA,923609016,483083652000
2008,EQUINOR ASA,923609016,588422000000
2018,HELSE SØR-ØST RHF,991324968,75744464000
2008,HELSE SØR-ØST RHF,991324968,48986731000
2018,EQUINOR ENERGY AS,990888213,214951445000
2008,EQUINOR ENERGY AS,990888213,81474000000
2018,HYDRO ALUMINIUM AS,917537534,52570000000
2008,HYDRO ALUMINIUM AS,917537534,48952000000

company_batch = requests.delete(
 'https://api.enin.ai/analysis/v1/company-batch/my_test_batch',
 auth=auth,
).json()
print_obj(company_batch)

https://api.enin.ai/datasets/v1/dataset/company-composite?company.org_nr=IN:
985615616,938333572&company.org_nr_schema=NO

However, your URL might become too long for large lists of companies. This brings us to the

second method of doing this in one request: You can POST partial company entities as part of a

json body like this:

Under the hood this creates a short-lived temporary company batch, which is used immediately to

respond to your request like any batched request would. This method works for all /dataset/

{dataset_name} endpoints, and you should always use partial company entities when you POST,

even if it isn’t the /v1/dataset/company-composite endpoint.

Filtering based on new / changed rows

Sometimes it can be useful to download rows that have changed since some date or timestamp in

a dataset. This can be done by using the filter value update_timestamp and one of the operators

GT or GTE . As filter value you can use a date on the format: YYYY-MM-DD or a timestamp

YYYY-MM-DDTHH:MM:SS .

Let’s try with an example:

We added the filter "update_timestamp": "GTE:2021-05-01", and our request will now

retrieve any row that has changed since 2021-05-01 in the entities we have selected in our

keep_only_fields .

company_composites = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/company-composite",
 params={
 "response_file_type": "csv",
 "request_file_type": "json", # json is default, csv also supported
 "accounts_type.accounts_type_key": "EQ:annual_company_accounts",
 "company.org_nr_schema": "EQ:NO",
 },
 json=[
 {'org_nr': '985615616', 'org_nr_schema': 'NO'},
 {'org_nr': '938333572', 'org_nr_schema': 'NO'},
 {'uuid': '01cdf33b-fa49-435e-993e-a83dffbd5d31'},
],
 auth=auth,
).content.decode()
print(company_composites)

accounts = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/accounts-composite",
 params={
 "response_file_type": "csv",
 "accounts_type.accounts_type_key": "EQ:annual_company_accounts",
 "update_timestamp": "GTE:2021-05-01",
 "keep_only_fields": ','.join(
 [
 "company.name",
 "company.org_nr",
 "accounts.accounting_year",
 "accounts_income_statement.total_operating_income",
]
)
 },
 auth=auth,
).content.decode()
print(accounts)

Note that when using update_timestamp as a filter, any field in the entity that has changed will

trigger a change in the update timestamp. Meaning that you could experience retrieving individual

fields that have not been changed even though the update timestamp have changed. The update

timestamp only reflects that a field in the entity has changed.

This feature will work for the following endpoints:

Note that these endpoints will not have the update_timestamp filter available for them

Getting updated rows from /dataset/company-flag-history and /dataset/company-flag-

history-composite is not recommended as it is a snapshot table. Use the endpoint /company-

flag instead and set the filter looback_date to get all new entries (flags that have been set)

since that date.

Using order by with limit to get top lists
Sometimes it can be useful to order the dataset you are requesting. This can be done with the

order_by_fields query parameter. It requires fully qualified field names using dot notation. By

default the ordering is done ascending.

Let’s start with just ordering companies by name:

This returns:

'/company-employment',
'/company-employment-composite',
'/dataset/accounts',
'/dataset/accounts-composite',
'/dataset/company',
'/dataset/company-composite',
'/dataset/company-risk-score-measure',
'/dataset/company-risk-score-composite',
'/dataset/company-share-ownership',
'/dataset/company-share-ownership-composite',
'/dataset/currency-exchange-rate'

'/dataset/company-flag-history'
'/dataset/company-flag-history-composite'
'/company-flag'
'/company-flag-composite'

companies = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/company",
 params={
 "limit": 5,
 "response_file_type": "csv",
 "company.org_nr_schema": 'NO',
 "keep_only_fields": ','.join(
 [
 "company.name",
 "company.org_nr",
]
),
 "order_by_fields": 'company.name',
 },
 auth=auth,
).content.decode()
print(companies)

As you can see it sorts (lexicographically) in ascending order. You can set the ordering explicitly by

the following syntax:

And, you can list multiple of these using comma separators (,).

To illustrate multiple orderings, let’s order on name and revenue. And because there are very few

companies with the same name, let’s start from MOTORSENTER AS which we know there are

multiple of.

This prints:

name,org_nr
0001 INVEST AS,921826885
0001 PRODUCTION AS,919072083
001 KONSULENT1 Johansen,989258265
0047 IMPORT ROGER BERSVENDSEN,990149143
0047 OSLO AS,990893330

<field_name>:<asc|desc>

accounts = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/accounts-composite",
 params={
 "response_file_type": "csv",
 "company.name": "GTE:MOTORSENTER AS",
 "accounts_type.accounts_type_key": "EQ:annual_company_accounts",
 "accounts.accounting_year": "EQ:2018",
 "keep_only_fields": ','.join(
 [
 "company.name",
 "company.org_nr",
 "accounts_income_statement.total_operating_income",
]
),
 "order_by_fields": ','.join(
 [
 "company.name:asc",
 "accounts_income_statement.total_operating_income:desc",
]
),
 },
 auth=auth,
).content.decode()
print(accounts)

company.name,company.org_nr,accounts_income_statement.total_operating_income
MOTORSENTERET AS,966377607,41998000
MOTORSENTERET AS,971233974,15131000
MOTORSENTERET AS,976604628,5654000
MOTORSENTERET EIENDOM AS,987659327,410000
MOTORSENTERET HEIDAL AS,999301061,29965000
MOTORSENTERET-LIMO NORGE AS,911916797,6497000
MOTORSENTERET SELBU OG TYDAL AS,916983069,12266000
MOTORSERVICE ALTA AS,998539749,4061000
MOTOR SERVICE AS,817570852,7229000
MOTOR-SERVICE AS,914424011,819000
MOTOR-SERVICE BILSENTER AS,977199832,35394000
MOTORSERVICE DA,929710339,5176000

As you can see the names are sorted ascending, and because there are three

“MOTORSENTERET AS” with their own organization numbers, they are sorted descending by

accounts_income_statement.total_operating_income , same applies to

MOTOR SERVICE AS further down the list.

Using limit and offset to paginate results
In general, we recommend fetching the full dataset you want in one go. Because the data is being

streamed to you, you should be able to read the stream line-by-line, and that way be able to handle

any memory issues. However, if for whatever reason this isn’t suitable for your use case it is

possible to paginate results using the limit query parameter in conjunction with the offset

query parameter. This will make it possible to fetch the whole dataset across multiple requests.

There is one inherent risk when using pagination: There is no guarantee that the dataset will

remain unchanged while paginating through the results. However, if no data manipulation

operations, i.e., inserts, updates, or deletes, are done while you paginate, the results should be

consistent.

Furthermore, if you apply an offset as query parameter, the dataset must be sorted (https://

www.postgresql.org/docs/current/queries-limit.html) in order to give consistent results. This will

slow down your request even if you do not specify a sort order, (in which case sorting is done on

the primary key of the dataset your requesting.)

Note : Not all Datasets API endpoints support the limit and offset

query parameter, or may support it in an unexpected way. As of May

2020, this limitation applies to the company-flag and company-flag-

composite endpoints of the Datasets API. These two endpoints do not

support the offset query parameter at all, and supports the limit

query parameter only partially. In fact, the limit parameter is not even

documented in the automatic API documentation, as it is not intended for

production systems, only for testing purposes. It will limit the number

returned entries, but may return up to a fixed multiple of requested limit

due to technical limitations.

Alright, enough caveats. Let’s paginate over all companies with an organization number starting

with 9175406 . We can do this using the LIKE dot notation filter operator.

https://www.postgresql.org/docs/current/queries-limit.html
https://www.postgresql.org/docs/current/queries-limit.html
https://www.postgresql.org/docs/current/queries-limit.html
https://www.postgresql.org/docs/current/queries-limit.html

Notice how we increment the offset by the limit size. This ensures you are getting disjoint sets of

data. Also, notice that we break out of the loop if we get anything else than a 200 HTTP status

code, i.e., there is probably a problem and we might have entered an infinite loop. Finally, notice

how we sort by company.name , this isn’t actually enough to ensure consistent ordering, so

under-the-hood another ordering is added on company.uuid as it is the primary key of the

subject entity, company .

The pagination loop runs three times, two times with data, and one where the result is empty:

When the data is empty it breaks out of the loop, and we are done.

Datasets API Metadata
For now we suggest requesting the endpoints using a limit of 1 to see what fields are available. We

will expand with more documentation later, which will include dynamically updated metadata.

companies = None
offset = 0
limit = 6
while companies is None or companies:
 print("From entry", offset, "to entry", offset + limit)
 response = requests.get(
 "https://api.enin.ai/datasets/v1/dataset/company-composite",
 params={
 "response_file_type": "jsonl",
 "company.org_nr_schema": "EQ:NO",
 "company.org_nr": "LIKE:9175406%",
 "keep_only_fields": "company.uuid,company.name,company.org_nr",
 "order_by_fields": "company.name",
 'limit': limit,
 'offset': offset,
 },
 auth=auth,
)
 companies = response.content.decode()
 print(companies)
 if response.status_code != 200:
 break

 offset += limit

From entry 0 to entry 6
{"company": {"name": "ANNE BIRGITTE NESSE", "uuid": "1ca93ab6-8507-488e-b903-888a4cf22b12", ...
{"company": {"name": "ÅRNES KORNSILO & MØLLE BA", "uuid": "10b32f80-c30f-443a-bc33-528b112e ...
{"company": {"name": "ENIN AS", "uuid": "f0e01f1e-f977-429f-ac12-0f0418901bfe", "org_nr": " ...
{"company": {"name": "HANNA BERGH", "uuid": "fcbde1ab-db34-4757-ac66-85c2ccd7db2b", "org_nr ...
{"company": {"name": "LINDA DAHL INVEST AS", "uuid": "7f71497e-e02c-459c-ae09-1463178bdfca" ...
{"company": {"name": "LOOMIAN ENTERTAINMENT BERG", "uuid": "5dc21c97-25ac-46a8-91d5-a9d9acc ...

From entry 6 to entry 12
{"company": {"name": "NP CONSULT SP.Z O.O", "uuid": "d3141183-eeff-4dbe-84af-25cc15876f6e", ...
{"company": {"name": "PEARL OF THE ORIENT ANABELLE DELOS SANTOS TVERÅ", "uuid": "defdb0b1-f ...
{"company": {"name": "TØRRES AVIATION", "uuid": "5faf1564-43d6-46ba-95d0-9989fa3c3df1", "or ...

From entry 12 to entry 18

	Enin Datasets API Tutorial
	Available API Endpoints
	Requirements
	Authentication
	Datasets
	Entities and their composites
	Fetching basic entity data
	Fetching composite entity data
	Selecting fields
	Ignoring particular fields or entities
	Keeping only particular fields or entities

	Filtering entities
	Basic data field filtering
	Advanced data fields filtering
	Company batches filtering
	Company batches filtering in a single request
	Filtering based on new / changed rows

	Using order by with limit to get top lists
	Using limit and offset to paginate results

	Datasets API Metadata

